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ABSTRACT

We discuss domain constants related to the classical Bieberbach and
Koebe theorems. We find a class of simply connected domains for which
the product of these constants behave like extremal domain and gives a
better result on Osgood’s inequalities.

1. Introduction

A domain D in the complex plane C is hyperbolic if its complement contains at
least two points. For a point w in D, we denote by Ap(w) the hyperbolic metric
of D at w and by dp(w) the infimum Euclidean distance from w to the boundary
of D. We define, as in [M],

C(D) = inf{Ap(w)dp(w): w € D}

and, as in [HM],

1 | v log Ap(w))
D) = = sup { L 8ADWIL e DL
n(D) QSuP{ Ap(w) we }

We call, as in [R1], [R2] and [TR], (D) the Bieberbach constant and
C(D) the Koebe constant for a hyperbolic domain D. We point out, as in
Pommerenke [P2], that a hyperbolic domain is uniformly perfect if and only if
C(D) > 0.
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We focus on Osgood’s inequalities [O, Theorem 5] which state that, if D is a
hyperbolic domain, then

(1) % <n(D)C(D) <1

The upper bound appears not to be sharp for simply connected domains. For
example, if D is a convex domain then n(D)C(D) = 1/2. If D is a slit plane then
n(D)C(D) = 1/2. Furthermore, Rugeihyamu [R1] and [R2] proved that if D is a
spike domain or a slit disk, then n(D)C(D) = 1/2.

In this paper we obtain another class of simply connected domains with
n(D)C(D) = 1/2. We also study a second class of simply connected domains,
which we believe has the same property. First we need the following definitions:

Definition 1: Set 0 < p < 4. A domain D, is said to be a sector domain if
D, = {w: |argw| < pr/4}.

Note that if p = 2, then D, becomes the right half plane. If p = 4, then D,
becomes the slit plane which omits the negative real axis.

Definition 2: Set 0 < p < 4. A domain S,, is said to be a sector disk if
S, = {w: |argw| < pr/4 and |w| < 7},

where r is a finite positive real number.
Sy is the slit disk given by Sy = D(0,r) ~[-7,0].

Definition 3: Let {D,} be a sequence of domains. We define the pre-kernel of
{D,} to be the set

{w: there is a positive r so that D(w,7) C D, for all sufficiently large n}.

If 2 lies in the pre-kernel, we define the kernel of {D,} with respect to 2z
to be the component of the pre-kernel that contains z5. If the pre-kernel does
not contain zg, then the sequence {D,} is said not to have a kernel with respect
to zp. Furthermore, we say that a sequence of domains {D,} converges to D
with respect to 2p if 2o lies in the pre-kernel of {D,} and each subsequence of
{D,} has the same kernel D with respect to zo. This is indicated by the notation
D,, - D as n — oo with respect to zg.

We also use the following Carathéodory Kernel Convergence Theorem
[C, p. 85-90],
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THEOREM A: Suppose that for each n > 1, f,, is a conformal map of the unit
disk U onto a domain D,, with f,(0) = zp and f/(0) > 0. Then the sequence of
conformal maps {f,} converges uniformly on each compact subset of U, say to
f, if and only if the sequence of domains {D,} converges to a domain D with
respect to zy. In the case of convergence, f is a conformal map of the unit disk
U onto D with f(0) = zp and f'(0) > 0.

To motivate our work, let 0 < p < 4 and w be a point in D,. Set w = retf
then

Ill;—gM = VA + (p* ~ 4) cos(20/p).
p,(w)

We deduce the result proved by [P1, p. 117}, [Y, p. 173] and [R2, p. 62], that

is, if 2 < p < 4, then

(2) n(D) = p/2.
Our first Theorem is

THEOREM 1: Suppose that D, is a sector domain and that 2 < p < 4. Then
C(D,) =1/p.

To our second result we prove

THEOREM 2: Suppose that S, is a sector disk and that 2 < p < 4. Then
C(S,) =1/p.

Rugeihyamu [R1] and [R2] proved that for a slit disk C'(S4) = 1/4 and 7(S4) =
2. Also note that if 0 < p < 2, then S, is a convex domain with C(S,) = 1/2
and n(S,) = 1. Our last result gives a better estimate in (1) as p approaches 4.

THEOREM 3: Suppose that S, is a sector disk and that 2 < p < 4. Then

p/2 < n(S,) < 2.

2. Main results
For a sector domain D, one has

| vlogAp, ()|

P, @) = for each z > 0.

n D

If 2 < p < 4, then the extremal value for the Bieberbach constant n(D,) occurs
along the positive real axis. The extremal value for the Koebe constant C(D,)
also occurs along the positive real axis.
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Proof of Theorem 1: Let w be a point in D,. The function f, = w?’? is a
conformal map of the right half plane onto the domain D,. By the pullback
metric of the right half plane, the hyperbolic metric of D, is given by

1

Ap, (w) = TG =35 Re(w?/7)]

w € D,.
In particular, if w = z is a point which lies on the positive real axis of D,, then
Ap,(x) =1/px for each x > 0.

The origin is the closest point on the boundary of D, to the point 2. Thus,
dp,(x) = r and
Ap,(2)dp,(z) =1/p for each x in D,.

It follows that C(D,) < 1/p. On the other hand, by Osgood’s inequality (1) and
(2), we have

C(D,) 2 1/2n(D,) = 1/p.

Combining the inequalities gives the required result. |

Proof of Theorem 2: By scale invarinace we may assume that r = 2. We set
8% =nS, = {w: w/n € S,} for all n > 1. Since the Koebe constant is invariant
under rotation, translation and scaling of a domain it follows that

As,(w/n)ds,(w/n) = /\S;(w)55;; (w), wes,.
In particular, if w =1 then
3) As,(1/n)ds,(1/n) = Asp (1)dsp (1).

Next we consider the kernel of the sequence {S}} with respect to 1. Since the
sequence {S7} is increasing with J{S;} = D, then, by definition, the sector
domain D, is the kernel of {S}} with respect to 1.

Let f, be the conformal map of U onto S} normalised so that f,(0) =1 and
f1(0) > 0 for all n > 1. By the Carathéodory Kernel Convergence Theorem the
functions f,(z) converge uniformly in each compact subset of U to f,(z), where
[, is the conformal map of U onto D, given by

fp(z) _ (1 + z)p/2.

1—-=z
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By a standard argument, f;(z) = f,(z) uniformly in each compact subset of
U. In particular, f;(0) = f,(0) = p as n — oo and hence

1 1

4 lim -.

@ AT AC T
By the pullback of the hyperbolic metric, A 5n( FaGENIFL(2)] = Au(z) for each

z in U. In particular, Asx (f2(0)) = 1/|£,(0)]. Since f,(0) =1 for alln > 1, then
by (4) we have

(5) lim Agn (1) =1/p.

n—o0

Let x be a point in (0, 1]. Then the origin is the closest point on the boundary
of 57 to 2. Thus, 553 (x) = « for all n > 1. In particular, if x = 1 then 653 (1)=1
for all n > 1. We combine this result with (5) to obtain
(6) Jim Asn(1)dsn(1) = 1/p.

Combining (3) and (6) gives lim,_,o As,(1/n)ds,(1/n) = 1/p. Thus C(S,) <
1/p.

Next we show that C(S,) > 1/p. Set Ey = {wy € 05, |wg] < 2} and
Ey = {wo € 05,: |wo| = 2}. Then we divide the points in S, into two regions Fy
and Fy where Fy = {w € S,: ds,(w) = dist(w, Ep)} and Fy = {w € §,: §5, (w) =
dist(w, Ey)}. It follows that

C(S,) =inf{As, (w)ds, (w): w € S,}
=min{inf{As, (w)ds, (w): w € Fy},inf{As, (w)ds, (w): w € Fy}}.
Since S, C D, and S, C D = D(0,2), then by the monotonicity property of
the hyperbolic metric we have Ap (w) < As, (w) and Ap(w) < As,(w) for each

w € S,. In particular, if w is a point in Fy, then dg,(w) = dp, (w) = dist(w, Eo)
and so

(7) Ap,(w)dp,(w) < Ag, (w)ds,(w), for each w € Fy.
If w is a point in Fy, then ds,(w) = dp(w) = dist(w, E,) and

(8) Ap(w)dp(w) < As, (w)ds,(w), for each w € F.
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It follows from (7) and (8) that

C(S,) 2 min{inf{Ap,(w)dp,(w): w € Fo},inf{Ap(w)dp(w): w € F1}}
>min{inf{Ap,(w)dp,(w): w € D,},inf{Ap(w)dp(w): w € D}}
— min{C(D,), C(D)}
=min{C(D,),1/2}
=min{l1/p,1/2} by Theorem 1
=1/p.

Thus C(S,) > 1/p. Combining the two inequalities gives C(S,) = 1/p. |

Proof of Theorem 3: The lower bound is obtained by combining (1) and
Theorem 2. The upper bounds follows from the fact that a domain S, is simply
connected. |
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