ON THE BIEBERBACH AND KOEBE CONSTANTS FOR SECTOR DOMAINS AND SECTOR DISKS

ΒY

Sylvester E. Rugeihyamu

Department of Mathematics, University of Dar-es-Salaam P.O. Box 35062, Dar-es-Salaam, Tanzania e-mail: sruge@maths.udsm.ac.tz

ABSTRACT

We discuss domain constants related to the classical Bieberbach and Koebe theorems. We find a class of simply connected domains for which the product of these constants behave like extremal domain and gives a better result on Osgood's inequalities.

1. Introduction

A domain D in the complex plane \mathbb{C} is hyperbolic if its complement contains at least two points. For a point w in D, we denote by $\lambda_D(w)$ the hyperbolic metric of D at w and by $\delta_D(w)$ the infimum Euclidean distance from w to the boundary of D. We define, as in [M],

$$C(D) = \inf\{\lambda_D(w)\delta_D(w) \colon w \in D\}$$

and, as in [HM],

$$\eta(D) = \frac{1}{2} \sup \left\{ \frac{|\nabla \log \lambda_D(w)|}{\lambda_D(w)} : w \in D \right\}.$$

We call, as in [R1], [R2] and [TR], $\eta(D)$ the **Bieberbach constant** and C(D) the **Koebe constant** for a hyperbolic domain D. We point out, as in Pommerenke [P2], that a hyperbolic domain is uniformly perfect if and only if C(D) > 0.

Received November 29, 2001

We focus on Osgood's inequalities [O, Theorem 5] which state that, if D is a hyperbolic domain, then

(1)
$$\frac{1}{2} \le \eta(D)C(D) \le 1$$

The upper bound appears not to be sharp for simply connected domains. For example, if D is a convex domain then $\eta(D)C(D) = 1/2$. If D is a slit plane then $\eta(D)C(D) = 1/2$. Furthermore, Rugeihyamu [R1] and [R2] proved that if D is a spike domain or a slit disk, then $\eta(D)C(D) = 1/2$.

In this paper we obtain another class of simply connected domains with $\eta(D)C(D) = 1/2$. We also study a second class of simply connected domains, which we believe has the same property. First we need the following definitions:

Definition 1: Set $0 < \rho \leq 4$. A domain D_{ρ} is said to be a sector domain if

$$D_{\rho} = \{w: |\arg w| < \rho \pi/4\}.$$

Note that if $\rho = 2$, then D_{ρ} becomes the right half plane. If $\rho = 4$, then D_{ρ} becomes the slit plane which omits the negative real axis.

Definition 2: Set $0 < \rho \leq 4$. A domain S_{ρ} is said to be a sector disk if

$$S_{\rho} = \{ w: |\arg w| < \rho \pi/4 \text{ and } |w| < r \},\$$

where r is a finite positive real number.

 S_4 is the slit disk given by $S_4 = D(0, r) \setminus [-r, 0]$.

Definition 3: Let $\{D_n\}$ be a sequence of domains. We define the **pre-kernel** of $\{D_n\}$ to be the set

{w: there is a positive r so that $\overline{D(w,r)} \subseteq D_n$ for all sufficiently large n}.

If z_0 lies in the pre-kernel, we define the **kernel** of $\{D_n\}$ with respect to z_0 to be the component of the pre-kernel that contains z_0 . If the pre-kernel does not contain z_0 , then the sequence $\{D_n\}$ is said not to have a kernel with respect to z_0 . Furthermore, we say that a sequence of domains $\{D_n\}$ converges to Dwith respect to z_0 if z_0 lies in the pre-kernel of $\{D_n\}$ and each subsequence of $\{D_n\}$ has the same kernel D with respect to z_0 . This is indicated by the notation $D_n \to D$ as $n \to \infty$ with respect to z_0 .

We also use the following Carathéodory Kernel Convergence Theorem [C, p. 85–90],

THEOREM A: Suppose that for each $n \ge 1$, f_n is a conformal map of the unit disk U onto a domain D_n with $f_n(0) = z_0$ and $f'_n(0) > 0$. Then the sequence of conformal maps $\{f_n\}$ converges uniformly on each compact subset of U, say to f, if and only if the sequence of domains $\{D_n\}$ converges to a domain D with respect to z_0 . In the case of convergence, f is a conformal map of the unit disk U onto D with $f(0) = z_0$ and f'(0) > 0.

To motivate our work, let $0 < \rho \leq 4$ and w be a point in D_{ρ} . Set $w = re^{i\theta}$, then

$$\frac{|\nabla \log \lambda_{D_{\rho}}(w)|}{\lambda_{D_{\rho}}(w)} = \sqrt{4 + (\rho^2 - 4)\cos(2\theta/\rho)}.$$

We deduce the result proved by [P1, p. 117], [Y, p. 173] and [R2, p. 62], that is, if $2 \le \rho \le 4$, then

(2)
$$\eta(D) = \rho/2.$$

Our first Theorem is

THEOREM 1: Suppose that D_{ρ} is a sector domain and that $2 \leq \rho \leq 4$. Then $C(D_{\rho}) = 1/\rho$.

To our second result we prove

THEOREM 2: Suppose that S_{ρ} is a sector disk and that $2 \leq \rho \leq 4$. Then $C(S_{\rho}) = 1/\rho$.

Rugeihyamu [R1] and [R2] proved that for a slit disk $C(S_4) = 1/4$ and $\eta(S_4) = 2$. Also note that if $0 < \rho \leq 2$, then S_{ρ} is a convex domain with $C(S_{\rho}) = 1/2$ and $\eta(S_{\rho}) = 1$. Our last result gives a better estimate in (1) as ρ approaches 4.

THEOREM 3: Suppose that S_{ρ} is a sector disk and that $2 \leq \rho \leq 4$. Then

$$\rho/2 \le \eta(S_{\rho}) \le 2.$$

2. Main results

For a sector domain D_{ρ} one has

$$\frac{|\nabla \log \lambda_{D_{\rho}}(x)|}{2\lambda_{D_{\rho}}(x)} = \frac{\rho}{2} \quad \text{for each } x > 0.$$

If $2 \le \rho \le 4$, then the extremal value for the Bieberbach constant $\eta(D_{\rho})$ occurs along the positive real axis. The extremal value for the Koebe constant $C(D_{\rho})$ also occurs along the positive real axis.

S. E. RUGEIHYAMU

Proof of Theorem 1: Let w be a point in D_{ρ} . The function $f_{\rho} = w^{\rho/2}$ is a conformal map of the right half plane onto the domain D_{ρ} . By the pullback metric of the right half plane, the hyperbolic metric of D_{ρ} is given by

$$\lambda_{D_{\rho}}(w) = rac{1}{
ho |w^{(
ho - 2)/
ho} \operatorname{Re}(w^{2/
ho})|}, \quad w \in D_{
ho}.$$

In particular, if w = x is a point which lies on the positive real axis of D_{ρ} , then

$$\lambda_{D_{\rho}}(x) = 1/\rho x$$
 for each $x > 0$.

The origin is the closest point on the boundary of D_{ρ} to the point x. Thus, $\delta_{D_{\rho}}(x) = x$ and

$$\lambda_{D_{\rho}}(x)\delta_{D_{\rho}}(x) = 1/\rho$$
 for each x in D_{ρ} .

It follows that $C(D_{\rho}) \leq 1/\rho$. On the other hand, by Osgood's inequality (1) and (2), we have

$$C(D_{\rho}) \ge 1/2\eta(D_{\rho}) = 1/\rho.$$

Combining the inequalities gives the required result.

Proof of Theorem 2: By scale invariance we may assume that r = 2. We set $S_{\rho}^{n} = nS_{\rho} = \{w: w/n \in S_{\rho}\}$ for all $n \geq 1$. Since the Koebe constant is invariant under rotation, translation and scaling of a domain it follows that

$$\lambda_{S_{\rho}}(w/n)\delta_{S_{\rho}}(w/n) = \lambda_{S_{\rho}^{n}(w)}\delta_{S_{\rho}^{n}}(w), \quad w \in S_{\rho}.$$

In particular, if w = 1 then

(3)
$$\lambda_{S_{\varrho}}(1/n)\delta_{S_{\varrho}}(1/n) = \lambda_{S_{\varrho}^{n}}(1)\delta_{S_{\varrho}^{n}}(1).$$

Next we consider the kernel of the sequence $\{S_{\rho}^n\}$ with respect to 1. Since the sequence $\{S_{\rho}^n\}$ is increasing with $\bigcup\{S_{\rho}^n\} = D_{\rho}$ then, by definition, the sector domain D_{ρ} is the kernel of $\{S_{\rho}^n\}$ with respect to 1.

Let f_n be the conformal map of U onto S_{ρ}^n normalised so that $f_n(0) = 1$ and $f'_n(0) > 0$ for all $n \ge 1$. By the Carathéodory Kernel Convergence Theorem the functions $f_n(z)$ converge uniformly in each compact subset of U to $f_{\rho}(z)$, where f_{ρ} is the conformal map of U onto D_{ρ} given by

$$f_{\rho}(z) = \left(\frac{1+z}{1-z}\right)^{\rho/2}$$

Vol. 136, 2003

By a standard argument, $f'_n(z) \to f'_\rho(z)$ uniformly in each compact subset of U. In particular, $f'_n(0) \to f'_\rho(0) = \rho$ as $n \to \infty$ and hence

(4)
$$\lim_{n \to \infty} \frac{1}{|f'_n(0)|} = \frac{1}{\rho}.$$

By the pullback of the hyperbolic metric, $\lambda_{S_{\rho}^{n}}(f_{n}(z))|f'_{n}(z)| = \lambda_{U}(z)$ for each z in U. In particular, $\lambda_{S_{\rho}^{n}}(f_{n}(0)) = 1/|f'_{n}(0)|$. Since $f_{n}(0) = 1$ for all $n \geq 1$, then by (4) we have

(5)
$$\lim_{n \to \infty} \lambda_{S^n_{\rho}}(1) = 1/\rho.$$

Let x be a point in (0, 1]. Then the origin is the closest point on the boundary of S_{ρ}^{n} to x. Thus, $\delta_{S_{\rho}^{n}}(x) = x$ for all $n \geq 1$. In particular, if x = 1 then $\delta_{S_{\rho}^{n}}(1) = 1$ for all $n \geq 1$. We combine this result with (5) to obtain

(6)
$$\lim_{n \to \infty} \lambda_{S^n_{\rho}}(1) \delta_{S^n_{\rho}}(1) = 1/\rho.$$

Combining (3) and (6) gives $\lim_{n\to\infty} \lambda_{S_{\rho}}(1/n)\delta_{S_{\rho}}(1/n) = 1/\rho$. Thus $C(S_{\rho}) \leq 1/\rho$.

Next we show that $C(S_{\rho}) \geq 1/\rho$. Set $E_0 = \{w_0 \in \partial S_{\rho} : |w_0| < 2\}$ and $E_1 = \{w_0 \in \partial S_{\rho} : |w_0| = 2\}$. Then we divide the points in S_{ρ} into two regions F_0 and F_1 where $F_0 = \{w \in S_{\rho} : \delta_{S_{\rho}}(w) = \operatorname{dist}(w, E_0)\}$ and $F_1 = \{w \in S_{\rho} : \delta_{S_{\rho}}(w) = \operatorname{dist}(w, E_1)\}$. It follows that

$$C(S_{\rho}) = \inf\{\lambda_{S_{\rho}}(w)\delta_{S_{\rho}}(w) \colon w \in S_{\rho}\}$$

= min{inf{ $\lambda_{S_{\rho}}(w)\delta_{S_{\rho}}(w) \colon w \in F_{0}$ }, inf{ $\lambda_{S_{\rho}}(w)\delta_{S_{\rho}}(w) \colon w \in F_{1}$ }.

Since $S_{\rho} \subset D_{\rho}$ and $S_{\rho} \subset D = D(0, 2)$, then by the monotonicity property of the hyperbolic metric we have $\lambda_{D_{\rho}}(w) \leq \lambda_{S_{\rho}}(w)$ and $\lambda_{D}(w) \leq \lambda_{S_{\rho}}(w)$ for each $w \in S_{\rho}$. In particular, if w is a point in F_0 , then $\delta_{S_{\rho}}(w) = \delta_{D_{\rho}}(w) = \operatorname{dist}(w, E_0)$ and so

(7)
$$\lambda_{D_{\rho}}(w)\delta_{D_{\rho}}(w) \leq \lambda_{S_{\rho}}(w)\delta_{S_{\rho}}(w), \text{ for each } w \in F_0.$$

If w is a point in F_1 , then $\delta_{S_{\rho}}(w) = \delta_D(w) = \operatorname{dist}(w, E_1)$ and

(8)
$$\lambda_D(w)\delta_D(w) \le \lambda_{S_\rho}(w)\delta_{S_\rho}(w)$$
, for each $w \in F_1$.

It follows from (7) and (8) that

$$C(S_{\rho}) \geq \min\{\inf\{\lambda_{D_{\rho}}(w)\delta_{D_{\rho}}(w): w \in F_{0}\}, \inf\{\lambda_{D}(w)\delta_{D}(w): w \in F_{1}\}\}$$

$$\geq \min\{\inf\{\lambda_{D_{\rho}}(w)\delta_{D_{\rho}}(w): w \in D_{\rho}\}, \inf\{\lambda_{D}(w)\delta_{D}(w): w \in D\}\}$$

$$= \min\{C(D_{\rho}), C(D)\}$$

$$= \min\{C(D_{\rho}), 1/2\}$$

$$= \min\{1/\rho, 1/2\} \text{ by Theorem 1}$$

$$= 1/\rho.$$

Thus $C(S_{\rho}) \ge 1/\rho$. Combining the two inequalities gives $C(S_{\rho}) = 1/\rho$.

Proof of Theorem 3: The lower bound is obtained by combining (1) and Theorem 2. The upper bounds follows from the fact that a domain S_{ρ} is simply connected.

ACKNOWLEDGEMENT: The author thanks Dr. Tom Carroll for his valuable comments, suggestions and guidance. He also thanks Dr. Jim Langley for suggesting an alternative method of proof for Theorem 2.

References

- [C] J. B. Conway, Functions of One Complex Variable II, Springer-Verlag, New York, 1995.
- [HM] R. Harmelin and D. Minda, Quasi-invariant domain constants, Israel Journal of Mathematics 77 (1992), 115–127.
- [M] D. Minda, The Schwarzian derivative and univalence criteria, Contemporary Mathematics 38 (1985), 43–52.
- [O] B. G. Osgood, Some properties of f''/f' and the Poincaré metric, Indiana University Mathematics Journal **31** (1982), 449-461.
- [P1] Ch. Pommerenke, Linear-invariante Familien Analytischer Funktionen I, Mathematische Annalen 155 (1964), 108–154.
- [P2] Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Archive der Mathematik 32 (1979), 192–199.
- [R1] S. E. Rugeihyamu, On the Koebe and Bieberbach constants for a hyperbolic planar domain, Israel Journal of Mathematics 112 (2000), 369–378.
- [R2] S. E. Rugeihyamu, On the Koebe and Bieberbach constants for hyperbolic domains, Thesis, National University of Ireland, Cork, Ireland, 1999.

Vol. 136, 2003

- 123
- [TR] T. Carroll and S. E. Rugeihyamu, On the Bieberbach and Koebe constants of a simply connected domain, Journal of Complex Variables 46 (2001), 31–46.
- [Y] S. Yamashita, Univalent analytic functions and the Poincaré metric, Kodai Mathematics Journal 13 (1990), 45–48.