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A B S T R A C T  

We discuss domain constants related to the classical Bieberbach and 
Koebe theorems. We find a class of simply connected domains for which 
the product of these constants behave like extremal domain and gives a 
better result on Osgood's inequalities. 

1. I n t r o d u c t i o n  

A domain  D in the complex plane C is hyperbol ic  if its complement  contains at  

least two points.  For a point  w in D, we denote by )~D(W) the hyperbol ic  metr ic  

of  D at  w and by ~D (w) the inf imum Euclidean distance from w to the boundary  

of D. We define, as in [M], 

and, as in [HM], 

C(D) = inf{AD(W)SD(W): W e D} 

1 [ I V 1OgAD(W)I..XD(W) " D}.  r l ( D ) =  s u P l  w G  

We call, as in [R1], [R2] and [TR], rl(D) the B i e b e r b a c h  c o n s t a n t  and 

C(D) the K o e b e  c o n s t a n t  for a hyperbol ic  domain  D. We point  out,  as in 

Pommerenke  [P2], t ha t  a hyperbolic domain  is uniformly perfect if and only if 

C(D) > O. 

Received November 29, 2001 

117 



118 S.E. RUGEIHYAMU Isr. J. Math. 

We focus on Osgood's inequalities [O, Theorem 5] which state that,  if D is a 

hyperbolic domain, then 

(1) 1 -~ < 71(D)C(D ) < 1 

The upper bound appears not to be sharp for simply connected domains. For 

example, if D is a convex domain then ~?(D)C(D) = 1/2. If D is a slit plane then 

~(D)C(D) = 1/2. Furthermore, Rugeihyamu [R1] and [R2] proved that  if D is a 

spike domain or a slit disk, then ~I(D)C(D) = 1/2. 

In this paper we obtain another class of simply connected domains with 

~(D)C(D) = 1/2. We also study a second class of simply connected domains, 

which we believe has the same property. First we need the following definitions: 

Definition 1: Set 0 < p _< 4. A domain D o is said to be a s e c t o r  d o m a i n  if 

Dp = {w: I argwl < pTr/4}. 

Note that  if p = 2, then Dp becomes the right half plane. If p = 4, then D o 
becomes the slit plane which omits the negative real axis. 

Definition 2: Set 0 < p _< 4. A domain Sp is said to be a s e c t o r  d isk  if 

Sp = {w: largwl < pTr/4 and Iwl < r}, 

where r is a finite positive real nmnber. 

$4 is the slit disk given by $4 = D(0, r) " . I - r ,  0]. 

Definition 3: Let {D~ } be a sequence of domains. We define the p r e - k e r n e l  of 

{D~} to be the set 

{w: there is a positive r so that  D(w, r) C_ Dn for all sufficiently large n}. 

If Zo lies in the pre-kernel, we define the ke rn e l  of {Dn} w i t h  r e s p e c t  t o  Zo 

to be the component of the pre-kernel that  contains zo. If  the pre-kernel does 

not contain z0, then the sequence {D~} is said not to have a kernel with respect 

to z0. Furthermore, we say that  a sequence of domains {Dn} converges to D 

with respect to z0 if zo lies in the pre-kernel of {D~} and each subsequenee of 

{D~} has the same kernel D with respect to z0. This is indicated by the notation 

D~ --+ D as n --+ ~ with respect to z0. 

We also use the following Carath~odory Kernel Convergence Theorem 

[C, p. 85-90], 
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THEOREM A: Suppose that for each n >_ 1, fn is a conformal map of  the unit 

disk U onto a domain Dn with fn(O) = ZO and f~(O) > O. Then the sequence of 

conformal maps { fn} converges uniformly on each compact subset of  U, say to 

f ,  i f  and only i f  the sequence of domains { Dn} converges to a domain D with 

respect to zo. In the case of  convergence, f is a conformal map of  the unit disk 

U onto D with f(O) = Zo and if(O) > O. 

To mot iva te  our work, let 0 < p _< 4 and w be a point  in Dp. Set w = re i°, 

then 
] V log ADs (w)l = V/4 + (pC _ 4) cos(20/p). 

~.,(w) 
We deduce the result proved by [P1, p. 117], [Y, p. 173] and [R2, p. 62], t ha t  

is, if 2 _< p < 4, then 

(2) ~I(D) = p/2. 

Our first Theorem is 

THEOREM 1: Suppose that Dp is a sector domain and that 2 < p < 4. Then 

C(Dp) = 1/p. 

To our second result  we prove 

THEOREM 2: Suppose that Sp is a sector disk and that 2 < p < 4. Then 

C(Sp) = 1/p. 

Rugeihyamu [R1] and [R2] proved tha t  for a slit disk C($4) = 1/4 and ~1($4) = 

2. Also note tha t  if 0 < p _< 2, then Sp is a convex domain  with C(Sv) = 1/2 

and 71(Sp) = 1. Our  last result gives a be t te r  es t imate  in (1) as p approaches  4. 

THEOREM 3: Suppose that Sp is a sector disk and that 2 < p <_ 4. Then 

p/2 <_ zl(Sp) <_ 2. 

2. M a i n  results  

For a sector domain  Dp one has 

I v l ° g A D p ( X ) ]  = - P  for each x > 0. 
2~D~(X) 2 

If  2 < p < 4, then the ex t remal  value for the Bieberbach constant  ~(Dp) occurs 

along the posit ive real axis. The  ex t remal  value for the Koebe  constant  C(Dp) 

also occurs along the posit ive real axis. 
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Proof of Theorem 1: Let w be a point in Dp. The function fp = w p/2 is a 

conformal map of the right half plane onto the domain Dp. By the pullback 

metric of the right half plane, the hyperbolic metric of Dp is given by 

1 
ADp (w) ---- Pl ' "-Iw(p-2)/P ~t[',jIDelw2/P~t' w E D o. 

In particular, if w = x is a point which lies on the positive real axis of Dp, then 

ADp(X) = 1/px for each x > 0. 

The origin is the closest point on the boundary of Dp to the point x. Thus, 

5Dp (X) ~--- X and 

/~Dp(X)~Dp(X) --~ l ip  for each x in D o. 

It follows that  C(Dp) <_ 1/p. On the other hand, by Osgood's inequality (1) and 

(2), we have 

C(Do) >_ 1/2rt(Dp) = lip. 

Combining the inequalities gives the required result. | 

Proof of Theorem 2: By scale invarinace we may assume that r = 2. We set 

S'p ~ = nSp = {w: w/n E Sp} for all n >_ 1. Since the Koebe constant is invariant 

under rotation, translation and scaling of a domain it follows that 

= w e s o .  

In particular, if w = 1 then 

(3) Asp (1/n)hsp ( l /n )  = As;~ (1)6G* (1). 

Next we consider the kernel of the sequence {Sp ~ } with respect to 1. Since the 

sequence {S~} is increasing with U{S~ ~} = D o then, by definition, the sector 

domain Dp is the kernel of {Sp} with respect to 1. 

Let f~ be the conformal map of U onto Sp normalised so that fn(0) = 1 and 

f~(0) > 0 for all n >_ 1. By the Carath6odory Kernel Convergence Theorem the 

functions fn(Z) converge uniformly in each compact subset of U to fp(Z), where 

fo is the conformal map of U onto Dp given by 

(1 + z~P/2 
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By a standard argument, f~(z) -+ f~(z) uniformly in each compact subset of 

' f ; ( 0 )  p pc D'. In particular, f "  (0) --+ = as n -~ and hence 

1 1 
(4) lira ~ -  

If (0)l p 

By the pullback of the hyperbolic metric, As;* (f~(z))lff,(z)] = Au(z) for each 

z in U. In particular, As~ (fn(0)) = 1/[g,(0)[. Since f~(0) = 1 for all n _> 1, then 

by (4) we have 

(5) lira +ks;~ (1) = 1/p. 
?~--+ OO 

Let x be a point in (0, 1]. Then the origin is the closest point on the boundary 

of S~ ~ to z. Thus, (~s;~ (x) = x for all n _> 1. In particular, i fx  = 1 then (~s~ (1) = 1 

for all n > 1. We combine this result with (5) to obtain 

(6) lira +k.~,2(1)Ss2 (1) = 1/p. 
n---+ (N3 

Combining (3) and (6) gives lim~_++o +~sp(1/n)Ssp(1/'n) = 1/p. Thus C(So) < 
1/p. 

Next we show that C(Sp) >_ 1/p. Set Eo = {wo E OSp: twol < 2} and 

E ,  = (wo ~ OSp= lu,ol -- 2}. Then we divide the points in S o into two regions Fo 

and FL where Fo = {w C Sp: ~is,('w) = dist(w, Eo)} and F1 = {w C So: 5sp(w) = 
dist(w, EL)}. It follows that 

C(So) = inf{Asp (w)<Ssp(w): w C So} 

= min{inf{ Asp (w)(~sp (w) w E F0 }, inf{ Asp (w)<Ssp (w): w ~ F1 } }. 

Since Sp c Dp and Sp c D = D(0, 2), then by tile monotonicity property of 

the hyperbolic metric we have ADp(w) <_ ASp(w) and AD(w) _< Asp(w) for each 

'w C Sp. In particular, if 'w is a point in F0, then 5sp(w) = 5Dp(W) = dist(w, Eo) 

a n d  s o  

(7) ADp(w)Snp(w) < ASp(W)SSp(u,), for each w C Fo. 

If w is a point in F1, then ~sp(w) =/ in (w)  = dist(w, El)  and 

( 8 )  ,~D(W)(~D(II') <_ Asp(w)~sp(u,), for each w E F1. 
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It  follows from (7) and (8) that  

C(Sp) >_ min{inf{ADp(W)hD~(W): w E F0}, inf{AD(W)hD(W): W E F1}} 

>_ min{inf{ADo(W)hD,(W): w C De}, inf{AD(W)~D(W): W C D}} 

= min{C(Dp),  C(D)} 

= min{C(Do),  1/2} 

=min{1 /p ,  1/2} by Theorem 1 

=l /p .  

Thus C(So) >_ 1/p. Combining the two inequalities gives C(So) = 1/p. | 

Proof  of  Theorem 3: The lower bound is obtained by combining (1) and 

Theorem 2. The upper bounds follows from the fact that  a domain S o is simply 

connected. | 
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